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Abstract

This report describes the progress achieved during the third period of the
study of elastic wave reflection from the curved and planar media subject to
water loading. During the previous period, extensive experimental investiga-
tions were initiated to study parametrically the behavior of acoustic beams
at curved and planar fluid-solid interfaces. Three types of materials, repre-
sentative of Navy applications, in two geometries and two sizes, and many
values of incident angle and angular or linear coordinates were included in
the effort of last year. Simultaneously, an aggressive program of theoretical
modeling and experimental verification were mounted and essentially all of
the data were compared to predictions of the model. We found, in most
cases, very good agreement between model calculations and experimental
data. For the theoretical modeling of these effects, the complex source point
(CSP) method was used to produce Gaussian line sources to account for the
wave-solid interaction for acoustic beams. The scattering problem solved in
this work is couched in terms of spectral integrals that are approximated
by high-frequency uniform asymptotics. The resulting expressions for the
reflected field contain interacting specularly reflected beam and leaky wave
contributions which establish the physical basis for the observed phenomena.
In addition to the two-dimensional modeling for comparison to experiments,
work began to formulate a 3-D beam model within the theoretical frame-
work for this more complicated circumstance as well. In continuation of the
efforts of last year, we have extended the two-dimensional model to three
dimensions. Furthermore, we have extended our measurement capabilities
from a CW data acquisition 'system to time-domain pulse excitation system.
The new measurement scheme has provided us with a wealth of information
that has lead to uncovering "whispering gallery" motces in solid curved struc-
tures; these had not been previously isolated in the CW measurements. All
of the measurements in this report are obtained using a time-domain acqui-
sition system. The calculations and measurements in this report have been
concentrated on cylindrical shells with a variety of material parameters and
dimensions.



Contents

Overview 1

1 Introduction 3

2 Theory 5

2.1 Flat plate structures ....... ....................... 5

2.1.1 3-D fields ...... ......................... 5

2.1.2 2-D fields ...... ......................... 8

2.1.3 Asymptotic solutions ........................ 9

2.1.4 3D complex ray field ........................ 9

2.1.5 2D complex ray field ......................... 10

2.2 Cylindrical structures ............................. 11

2.2.1 3-D fields ....... ......................... 12

2.2.2 2-D fields ....... ......................... 15

2.2.3 Asymptotic solutions ........................ 15

2.2.4 2-D Asymptotic nonspecular reflected fields ........ 16

2.2.5 3-D Asymptotic nonspecular reflected fields ........ 18

2.3 Complex Receiver Point ...... ..................... 24

3 Experimental Procedure 27

3.1 Sample preparation ............................... 27

3.1.1 Solid cylinder ............................. 27

3.1.2 Cylindrical shells ........................... 27

3.2 Experimental apparatus ...... ..................... 30

i



3.2.1 Panametrics scanning system .. ............... 30

3.2.2 Transducers ....... ........................ 33

3.2.3 Computers ................................ 33

3.3 Testing procedure ................................ 34

3.3.1 Transducer position calibration ................. 35

3.3.2 Data collection and manipulation ................ 38

4 Results and Discussion 39

4.1 Reflection coefficient poles .......................... 39

4.2 Time domain analysis of the reflected field .............. 43

4.3 Frequency domain analysis of the reflected field ........... 48

4.4 Reflection at a cylindrical fluid-solid interface ............ 48

4.4.1 Reflection from a solid cylinder ................. 50

4.4.2 Reflection from a fluid loaded cylindrical shell ..... .52

5 Summary and Conclusions 62

Plans for FY 95 63

--- ---- -----

-- --..
L , ::2 C , dt

)ii



List of Tables

1 Description of shell samples ...... ................... 28

2 Acoustic properties of shell materials ................... 28

3 List of cylindrical samples ...... .................... 38

4 Fluid-loaded poles for 4.5" aluminum cylinder ............ 41

5 Fluid-loaded poles for 4.5" steel cylinder ................ 42

6 Fluid-loaded poles for 6" steel cylinder ................. 42

7 Fluid-loaded poles for 3.125" copper cylinder ............. 42

)llloi



List of Figures

1 Flate plate geometry ............................. 6

2 The geometry of the cylindrical configuration for a 3D CSP
beam incident on a cylindrical surface .................. 19

3 Steel shells .................................... 29

4 Assorted shells ....... .......................... 29

5 Diagram of Panametrics transducer mount .............. 30

6 Top view of Panametrics scanning system ............... 31

7 Side view of Panametrics scanning system ............... 31

8 Panametrics manual control panel ..................... 32

9 DECstation and personal computer ................... 34

10 Calibration process ....... ........................ 36

11 Initial set-up ................................... 37

12 Reflection coefficient poles for Aluminum Plate ........... 41

13 Unfiltered time signals ....... ...................... 44

14 Filtered time signals ...... ....................... 45

15 Time signal plot for copper shell at Oi = 280 ..... .......... 46

16 Reflected signal paths ............................. 47

17 Angle vs. frequency density plot of reflected field from steel
shell at 6i = 350, showing the 1, 3, 5, and, 7MHz frequency
bands ........ ............................... 49

18 Time domain signal for 4.5" stainless steel cylinder at 8i = 300 50

19 Reflected field from a solid 4in. stainless steel cylinder at 0i =300 51

20 Comparison of reflected field for 4.5" SS shell 0, = 350, 310 . . 53

21 Reflected field from 4.5" SS shell at Oi = 310 ..... .......... 54

iv



22 Comparison of experimental results for 4.5" SS shell at e, = 350 55

23 Model comparison for 4.5" SS shell at O - 350 ......... 55

24 Reflected field from fluid loaded 4.5" SS shell at 0i = 350 . . . 56

25 Reflected field from air loaded 4.5" SS shell at Oi = 35° .... 56

26 Reflected field from 6" SS shell at 6i = 160 ............... 57

27 Reflected field from fluid-loaded 3.125" copper shell at 0i = 280 58

28 Experimental air and fluid loading comparison for copper shell,

Oi 28 .................................. 59

v



Acknowledgments

The work reported herein has been performed under the sponsorship of the
Naval Surface Warfare Center (Carderock Division); Mr John J. DeLoach, Jr
is the contract monitor. The experimental and theoretical work has benefit-
ted significantly from the contributions of our students, who have worked on
this project. Mr Todd Cloutier performed most of the experiments reported
here, under the direction of one of the principal investigators (DEC) and
is working to fulfill the requirements for the degree of Master of Science in
Engineering at Iowa State University. Dr Smaine Zeroug, advised by Prof
Felsen, received his PhD in Electrophysics at the Polytechnic University of
New York; he is now at Schlumberger-Doll Research.

vi



Overview

The objective of this program is to improve nondestructive inspection of
curved layered structures by ultrasonic modeling and experiments on waves
in fluid-loaded plates. We are accomplishing this by performing experimental
and theoretical studies of the interaction of bounded transducer beams with
curved layered solids. Our approach is a systematic one, in which we build
progressively to a high level of understanding of scattering and reflection in
the complicated materials under study in this project.

Nondestructive inspection of piate- or shell-like structures plays a criti-
cal role in Navy applications. Many components of naval systems are fab-
ricated in plate or shell geometries. Ultrasonic testing of such structures
effectively allows detection or sizing of internal discontinuities or sampling
of material properties. Typical of this class of fleet inspection problems is
the case of RAM coatings bonded to metal superstructure. In the corro-
sive hot/wet/saline environment these coatings are subject to disbonding at
the metal-polymer interface. Prior work on plate waves excited by beams
in purely planar fluid-solid (FS) geometries has demonstrated the sensitivity
of this type of ultrasonic wave mode to subtle internal defects (1, 2]. The
extension of the analysis and measurements to curved plates and acoustically
lossy media will permit us to achieve the full discrimination potential of the
method in realistic structures of interest to the Navy.

The contract milestones established for this reporting period (1 Oct 1992
to 30 July 1994) are:

MILESTONES - FY 93/94

93-1 Continue measurements and comparisons with prediction of beam al-
gorithm

93-2 Iterate model calculation and/or experimental procedure, as necessary
based on comparisons

93-3 Generalize Gaussian beam model to curved fluid-loaded plates; extend
algorithm to analyze re-radiated fields for this geometry
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In the body of this report the accomplishments achieved in this work to
date are described in detail. To highlight these items of progress we list them
here in summary form for quick reference.

ACCOMPLISHMENTS - FY 93

" Additional measurements and comparisons carried out for solid cylin-
drical geometry i

" Model calculation improved based on experimental results; reflected
field was modeled with complex receiver point 2

" Commercial transducer beam was modeled using complex Gaussian
functions Gaussian beam model was extended to include cylindrical
shells 2

" Experiments were carried out for cylindrical shells (several materials
and radii) using commercial transducers and results were compared to
model calculation with good agreement 3

" Whispering gallery modes were observed in the solid cylinder experi-

ment and verified using a ray model *

" Data acquisition was carried out in the time-domain (pulse excitation)
using a precision multi-axis scanner*

" Time/frequency characteristics of the received signal are available for
analysis*

"* Extended CSP Gaussian beam model from 2-D to a 3-D formulation*

Notes: Bold numbers key to FY93 milestones; * denotes unplanned addi-
tional progress.
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1 Introduction

In this report we present the recent theoretical and experimental progress in
our work on the study of acoustic wave behavior in the interaction between
ultrasonic beams and cylindrical shell structures. In the previous report
period, we concentrated on theoretical and experimental results obtained for
both flat plates and solid cylindrical structures. The problem of nonspecular
reflection of bounded beam from solid structures has been extensively studied
over the past 40 years, but in particular in the last 20 years [3, 4]. Essentially
all of these efforts have been cn planar solids, both halfspaces and plates.
Other studies on reflection of sound from cylinders [5, 6] has concentrated on
effectively planar incident fields, where the sound wave field does not vary
appreciably over the cylinder diameter.

Our problem, nonspecular sound beam reflection from cylindrical shells,
draws on experience gained and knowledge developed in these related stud-
ies but differs significantly in that our incident field has a substantial spatial
variation on the scale of the cylinder radius. Zeroug and Felsen [7, 8] studied
theoretically the noa-specular reflection of a divergent incident beam from
planar interface and collimated beam from curved interface. In the analy-
sis, plane interface results were extended to the more general conditions of
a curved interface and the divergent incident beam field. By the Complex-
Source-Point (CSP) method, which places a radiation source at a complex
coordinate location, a conventional line or point source excited field can be
converted into a two or three-dimensional quasi-Gaussian beam field which
is an exact solution of the dynamical equations. When the CSP field inter-
acts with a plane or cylindrically layered elastic medium, the resulting inter-
nal and external fields can be expressed rigorously in terms of wavenumber
spectral integrals. Asymptotic reduction of these integrals, achieved by the
steepest descent method applied to deformed contours in the complex spec-
tral wavenumber plane, accounts for all relevant wave phenomena. For the
reflected field, this yields explicit waveforms which are synthesized by inter-
acting the specularly reflected beam, leaky wave, and possible lateral wave
contribution. Comparison to the extensive experimental results of Zhang,
et al. [9] and Chimenti, et al. [10] for these geometries has shown very
good agreement with the predictions of approximate calculations based on
the procedure outlined above.
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This report will present our experimental and theoretical studies of the
non-specular reflection of collimated acoustic beams generated by a commer-
cially available piston radiator upon fluid-loaded cylindrical shells with air or
fluid internal loading. In Section 2, we present an extension of the 2-D CSP
model to 3 dimensions. Although for the case of reflection o1 the acoustic
wave from a cylinder, a 2-D model is sufficient, the 3-D model gives us the
capability of modeling wave reflection from more complicated objects. Also

it can provide us with a more realistic picture of the experiment. In Section
3, the theory of the complex source point is extended to a complex receiver
point and with the use of the reciprocity theorem, the voltage induced in the

receiving transducer can be calculated very efficiently. In the experimental
front, we have extended our capabilities from CW mode measurements to

both C\V and time-domain pulsed mode. The time-domain data is obtained

using a new and very reliable equipment that is available to us at the Center

for NDE at Iowa State University. A description of this system and exper-

imental procedure is discussed in Section 4. In Section 5, the results of the

experiments are discussed. These results include the detection of "Whisper-
ing Gallery" modes in the solid cylinder and other experiments on cylindrical

shells. The experiments on the cylindrical shells were carried out for a va-

riety of radii and materials. Finally a summary of the report and plans for

outyear research are presented in Section 6.

4



2 Theory

During the previous period, a 2-D CSP model was developed to provide theo-
retical result for comparison with the experimental measurements. Although
for most experiments done over cylindrical structures a 2-D model is suffi-
cient, a 3-D model has been developed to provide capability to model wave
reflection from more complicated objects. In the following section, the 3-D
CSP model is described for both flat plate and cylindrical structures.

2.1 Flat plate structures

As is customary in the application of the CSP technique, we first consider
scattering of the pressure field P in the fluid excited by a high-frequency real
line or point source in the presence of a plane stratified structure comprised
of homogeneous fluid and isotropic solid layers. The geometry is shown in
Figure 1. With the source located at Z', the time-harmonic pressure P at an
observation point r in the fluid can be derived from a displacement potential
field I(r;_'),

P(_.; r') = -p•(I(;_') for #r_-, (1)

where p! is the fluid density, w is the angular frequency and a time depen-
dence exp(-iZwt) is assumed and suppressed. The potential field in the fluid
satisfies the source-excited Helmholtz equation

(V2 + k')4(r; r) = -b( -z:'),= v (2)

subject to a radiation condition at infinity, and with boundary conditions
that account for the layers.. In the above, vf is the sound speed in the
fluid. We find the solution by expressing the potential -0(r; r') in terms of an
infinite spectrum of plane waves via spectral decompositions along the space
coordinates tangential to the layer boundaries [11].

2.1.1 3-D field6

For three-dimensional fields, excited by a point source, 1' a (x', y', z'), r
(x, y, z), and b(r_ - e') = b(x - x')6(y - y')b(z - z'). We employ the plane

5
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Figure 1: Flate plate geometry
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wave spectral decomposition,

'03D(L; F2-;-2 P 0 3(k., k,) exp[ik.(z - x') + ik&.(y - y')]dkdk,.

(3)
Upon substitution of Eq. (3) into Eq. (2), one obtains the reduced wave
equation for the spectral amplitude C3D(k,, ky), which (for point source ex-
citation) is solved to yield.

$zD(k.,ky) = f {exp[iKflz - z'j] + R(k.,ky)exp[-ixf (z + z')]}, z < 0

(4)
where te1 is defined as,

K1= V - (k2 + k2), Im{Kf} > 0 (5)

In Eq. (4), the spectral domain reflection coefficient R(k,, ky), which takes
into account the layered environment in z > 0, is evaluated by assuming
plane wave incidence from the fluid and enforcing the well known boundary
conditions at the fluid-solid interface at z = 0 and at subsequent solid-solid
and solid-fluid interfaces for z > 0. Due to isotropy along the (x, y) plane.
R(k,, k,) is always expressed in terms of the total transverse wavenumber
k 2 = (k2 + k2), as is Kj in Eq. (5). Therefore, it is convenient to perform the
change of variables to the angular spectrum

k, = k cos -y, ky = k sin j, dk.dky = kdkd-y. (6)

The spectral solution in Eq. (4) for the field in the fluid region excited by a
real source can be converted via the CSP technique [12]-[13] into the solution
due to a beam input by displacing the source point into the complex plane
via analytic continuation

X-- = x'+ibsinao,
Y-+ = y', (7)

zl---z = z' + ibcosao

where a tilde denotes a complex coordinate as well as functions of a complex
coordinate, and

b real > 0,

-r < ao < +7r. (8)

7



The real-space field radiated by this complex source is a rotationally sym-
metric 3D beam with a quasi-Gaussian amplitude whose maximum lies along
the angular direction a0 contained in the plane (x, z). Its waist is centered
at (r') and its l/e width wo is specified by the real parameter b through
w0 = N2b/k 1 , which establishes b as the Fresnel length of the beam. Inser-
tion of Eq. (4) into Eq. (3), and use of Eqs. (6)-(8) yields the angular spectral
integral representation of the total beam-excited field in the fluid, which can
be written as the sum of an incident and reflected part,

63D(W e) =3D(,; We) + 3 (,-; W ), (9)
wherewh er i +11 k ex [iP iD ( k , -t)]d d

ý3DE;( ) = A•" (10)
Vf- V

2

and
D(r-;�')- �= +r ? (+00 kR(k)exp[i'P-D(k"t)Idkd] (11)

87r f 'r JO Vkf kV

with

P•D(k,-y) = kcos-y(x- V')+ksin-y(y- ')± kf - k2 (z :F). (12)

In Eq. (12), the upper and lower signs pertain to the incident field V3D(_; r')
and reflected field 3ID(E; i'), respectively.

2.1.2 2-D fields

For two-dimensional fields excited by a uniform line source parallel to the y-
axis, one has r' = (x', z'), z_ m (x, z), 6 (_-r') =6(x-x')6(z-z'), with 4/8y =-
0. Spectral decomposition along x of the displacement potential satisfying
the two-dimensional form of the wave equation (2) leads to a solution of the
spectral amplitudes as in Eq. (4) but with ky - 0. The conversion from the
real line source field to a two-dimensional sheet beam field is accomplished
through the relations in Eq. (7), with omission of the second equation. The
final spectral integral representation for the total sheet-beam-excited field
can then be written similarly to Eq. (9) as in Eqs. (9)-(11),

$2D W e) = $i2D(!r_) + C2D(_;r), (13)

8



where
1 f+0o exp[iPl D(kc)]

-. D - 2 dk (14)

and
+00ILR(kr) exP[p2iD(k.)]dCD, L÷ 47r loo f T.-- 2- dk. (15)

with
Pin(k.) = k.(X - ) - ( '). (16)

2.1.3 Asymptotic solutions

When evaluated numerically, the exact solutions in Eqs. (10-16) furnish ref-
erence data for the field everywhere. For beam waist locations more than
a few wavelengths away from the layer interface, the spectral integrals can
be reduced asymptotically by the saddle point method applied to single and
double integrals in the complex k. and (k, f) planes, respectively, as devel-
oped in [11f. Asymptotic evaluation furnishes explicit results with physical
interpretations that highlight the relevant wave phenomena. In the following,
we summarize the final resulting asymptotic expressions. A detailed account
of the asymptotic procedure can be found in [14]-[15].

2.1.4 3D complex ray field

The three dimensional incident field can be expressed as

" "- exp[ik1 L.] (17)3,0r£' 47-Zi (17

where
Li -= V(X- 1,)2 + (y - 1,)2 + (z - ;)2, Re{L1,} > 0. (18)

The three dimensional nonspecular reflected field may be expressed as

r(r:,e') . R(k.) exp[ik( W + 14]
4r(L' + L)

9



exp[-i7r/4] M Res{R(k)}k, kp__-E V. 2 ex['p3~kp, (19)
22r j=1 pl

where,
L'= -'coS 0 ,, L = -z/cos i (20)

13= /(z- . ,) 2 + (y ._ý 1)2 , Re[A] >_ 0, (21)

The first term in Eq. (19) corresponds to the saddle point contribution and
describes the specularly reflected field. The second term in Eq. (19) corre-
sponds to residue contributions from M simple pole singularities that are
assumed to be near the saddle point. The uniform asymptotic expression
for the saddle point contribution can be obtained by applying the transition
function O(). The transition function TO can be expressed as

exp[-(-i.~p) 2] 1

r(-iip) - 2vp-(_iP) + 1erfc(-iip), (22)
=-2V'r_(-.gp) 2V17[-( -.(.-r.) 3D}

9 i [P( 3)- P(,)],, ( = (k.,p,) 3D

Here erfc in Eq. (22) is the complementary error function defined by

erfc(q) = 2 exp[-t 2 ldt. (23)

whereas the "numerical distance" Sp, corresponding to the pole kp, is,

9pj = Vi [PrD (L. r,, - P3rD (kp,,, i,,)]. (24)

2.1.5 2D complex ray field

The two-dimensional incident field can be expressed as

2D(_; _.,) ,,exp(iir/4j exp~ikf1 ij (25)

10



with

J (x - zt)2 + (z - z') 2 , Re{4i} > 0. (26)

The two-dimensional nonspecular reflected field can be expressed as

r(r; __) R~k8)expi7r/4] exp[ik 1(P' + i)]

1 -Af Res{R(k)}k,,
1-- 2 R k?}:L exp[iP2rD(kp,)]r(-i.pJ), (27)

2 j=I ýkv P

where
v' = cio = ks (28)

and i6, is the complex angle corresponding to the saddle point k., = ki sin k,
for the 2D reflected field. Moreover, ip, now becomes

ip, = V1' [PID(ks.) - P2'D(kp,)], (29)

2.2 Cylindrical structures

As in the case of the flat plate, we begin with the pressure field P in the fluid
excited by a time-harmonic high-frequency line or point source located at r'
in the presence of an elastic structure composed of homogeneous isotropic
cylindrical layers. The pressure at an observation point r can be derived
from a displacement potential field 0(11; r') which satisfies the wave equation
Eq.( 2) subject to a radiation condition at infinity and appropriate bound-
ary conditions at the outermrost interface of radius a. The 3-D boundary
value problem is solved in the spectral wavenumber domain corresponding
to the (0, z) coordinates perpendicular to the stratification; for 2-D, the z-
dependence is omitted. The azimuthal domain is extended from its physical
-7r < 0 < 7r range to an infinite domain -oo < _< oo in order to remove the
27r- periodicity constraint from the traveling azimuthal wave spectra f16, 171,
[11]. The periodicity in the physical angular domain -7r < 0 < r, which
leads to standing wave solutions, can be restored by placing in the unbounded
4, domain an infinite array of image sources but this shall not be required
here.

) 11



2.2.1 3-D fields

Referring to the defining equation for the potential 4 in Eq.( 1) and to the
wave equation Eq.( 2), we have the cylindrical coordinate representations,

_1 a a 1 02 02-V~ P (30)

_- _) ((p -)0 ')60(z - z') (31)

with r' - (p', 0', z') being the real source point location, and r a (p, 0, z).

Then, the spectral representation of the real-source-point 4 (_;; r') can be
written as,

S1 ! dv/_L d133D(V, 3)exp[iv(( - )') + i(z -z')].¢3D~; • --(2,•)J -cc o

(32)

A time dependence exp(-iwt) is suppressed. In Eq. (32), C3D(v, 3) is the

3D spectral amplitude defined by the reduced (radial) wave equation,
[d d +1'(2P2 ]2

+ f .. pp -_ V2) 63D(V, 1) = -b(p - p') (33)

The solution of Eq. (33) involves Bessel and Hankel functions. By a for-

mulation that emphasizes inward (-p) and outward (+p) traveling waves

as expressed by the Hankel function H,(2) and H},, respectively, one finds

[16, 17]

i r.Hf(•p)... ,•H(2)(Kca)H(1)(p< H(1(•>)

43D(V,1 ) = 2) a(KP<)+R(v, ) (a ) .
4 K f(Ka) J

(34)

where p and rho' are larger than a. In Eq. (34), p> and p< denote the larger

and lesser of p and p', respectively, while R(v,13) is the spectral domain

reflection coefficient at the fluid-solid interface p = a. Insertion of Eq. (34)

into Eq. (32) yields the spectral integral representation of the total field in the

fluid excited by a point source at a real location. To convert these results to

12



beam-type fields, we perform the following CSP substitution on the cartesian
coordinates of the real source,

X- '+ibcos Cksino,,

Y Y- y'+ibcosa.cosSao,

Z-' = z- + ibsina. (35)

with
b real > 0; -" <_ (ao, a,) 5 +7r. (36)

As in [14], the tilde' denotes a complex quantity. The CSP in cylindrical
coordinates follows from the familiar relations [18, 19],

S= +2 Re{f _'> 0,
1--01 = tan-' [X/y'], with 7/= r when x' = 0. (37)

The formulation in Eq. (34), with Eqs. (35)-(37), while useful for analyzing
the scattered asymptotic field, is indirect for extraction of the incident beam
field which travels from the source to the observer without encountering the
cylinder. In fact, the incident beam field is contributed in part by the first
term in the spectral amplitude in Eq. (34), and in part by a portion of
the second term. The complication, arising from the cylindrical coordinate
representation and discussed previously shall be avoided here entirely by
inserting for the incident beam field 4zL, its known coordinate-invariant free-
space form, which describes in real space a rotationally symmetric 3D beam
with quasi-Gaussian amplitude profile; the beam maximum (beam axis) is
along the direction specified by the angle cr with respect to the (x, y) plane
and by the angle ao with respect to the y axis in the (x, y) plane. Anticipating
the asymptotic evaluation, the analytically continued total beam-excited field
in the fluid can then be written as

43D(!; t)= 'I3D(t;t) + 3D(rf 0), (38)

where the scattered field $3D(r; e_) is given asymptotically by
•3v~~~~~r-""~H. "(x) 16r d/o,,.,,,()a) H,(j)(,f ý) ,•HO) (r

dv _______)__fP""6-7r f apnH),P ) (r , f a)

exp(iv(O - 4/) + i,.(z - ?)], (39)

13



Omission of the v-integration limits in Eq. (39) signifies that we shall utilize
only that portion of the v angular spectrum which establishes the scattered
field and does not contribute to the incident field. For asymptotic evaluation
of the integral in Eq. (39), the Hankel functions in the integrand are approx-
imated by Debye asymptotic forms that are valid in the parametric regimes
of interest here [11],

H._ sin) exp[T-iZr/4]exp[±irsin7-y iv-y] (40)

with the following definitions and restrictions,

cosy = -, 0 < Re-y < .r Iarg{T}I < 7r/2, lvI < I1, IV - rl > O(V1I1/3 ).
7.

(41)
For the relevant v spectral interval that yields the scattered field, the follow-
ing conditions apply,

IvI < (I•cfpl,IIcfp, IrfaI)
IV - (VipI, kiP'l, lKIal)j > O(lIJ1/3)

p, ý', a >> ref (42)

This yields

3D!: dv d/3R(v,I3) - (3
87 _ r2 •pp' dn, sin-sin' (

with

Pl(Y, )= Kf [p sin - + p' siny' - 2a sin n] -

S[7f + Y- 27y, -(-') + O(z - Z). (44)

Here, y, 7', and -y. are defined by

-I V - _-cos-, y'=cos • 7ya=cos -. (45)
KfP K1C P Kj a

According to the second condition in Eq. (41), the angles in Eq. (45) are
restricted to 0 < Re{f,7',-7.} < 7r.

14



2.2.2 2-D fields

For 2-D excitation, the source distribution is assumed uniform along the
axial direction. This eliminates the z-coordinate from the problem, leaving
a spectral decomposition of the total field in the azimuthal direction only.
Accordingly, -= 0 in the radial wave equation (Eq. (33)) and the solution
in Eq. (34), thereby reducing Kf j kf. The CSP substitutions for the 2-D
sheet beam incident normally with respect to the axial direction then yield
Eq. (37), with a-. = 0. The total field in the fluid due to the 2-D CSP beam
source is written as

2D(_;_) = •D(r; _) + "2D(_; ). (46)

The asymptotically approximated incident beam field $oD(!_; e) will subse-
quently be written down directly in its known coordinate invariant form,
whereas the asymptotic scattered field is expressed by the approximate spec-
tral integral

"'2D Q:;) f_______ exp (47)v)

47r kf"1WV sin 7sin

with

P2 D(v) = kf [psiny + psin YI - 2asin1]- VY + 'Y'- 2-Ya-(•-)].

(48)
The angles -y, y', and ya are defined in Eq. (45) with !f -- kf.

2.2.3 Asymptotic solutions

Since the forms of the integrals in Eq. (43) and Eq. (47) are similar to the
integrals dealt with in the planar geometry [14], we can employ the same
generic procedure detailed for the flat plate to perform the asymptotic eval-
uation here. Thus, we shall approximate each integral by the contributions
arising from the saddle point and the pole singularities of the spectral re-
flection coefficient in a uniform manner which accounts for the proximity of
these critical points. Despite similarities between the integrals in the planar
and cylindrical formulations, there are fundamental differences in the wave
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phenomena in these two geometries due to differences in the complex phase
functions. Furthermore, unlike its plane wave counterpart, the cylindrical
wave reflection coefficient R(v, ý3) depends on both spectral variables. This
fact leads to a more complex evaluation procedure and correspondingly more
complex wave behavior in the cylindrical geometry. For clarity, we treat the
simpler 2-D case first.

2.2.4 2-D Asymptotic nonspecular reflected fields

Asymptotic evaluation of the integral in Eq. (47) by the saddle point method
requires determination of the saddle point(s) L, in the phase function PoD(V)

of the integrand. Setting the v-derivative of PrD equal to zero yields implic-
itly,

cos~- ] + cos- - 2cos-1 = ( - l). (49)

The contribution from the saddle point (denoted by 'D 5r(L; along the
steepest descent path (SDP) can then be expressed in ray-based coordinates
as follows ([11], Sec.6.7)

"exp[ikf(1'_+ 1)-+ ir/4] a(P + 1) sin -(.
~2D_,s(L; t') -R(ý,.) 2) V'i k-j( P ý+ ) 2N' + a(l' + i) sin -r ,7 (50)

where the complex lengths 1' and i, respectively, are extensions of the dis-
tances from the beam waist center to the interface and from the interface to
the observer, measured along the specularly reflected path segment. They
are defined by,

"' = p'sin-y''-asin-y,1, 1= psin-y-asin-ay0 ,. (51)

The expression in Eq. (50) describes the high-frequency quasi-Gaussian beam
field reflected from a cylindrically curved surface with radius a, and charac-
terized by a slowly varying reflection coefficient R(v). Such a reflected com-
plex ray field can be constructed directly via complex ray theory without the
spectral synthesis employed here [18, 19]. One notes in particular that the
last term in Eq. (50), expressed by the square root, determines primarily the
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effect of the surface curvature on the reflected beam. This term, which ap-
proaches unity as the radius of curvature becomes very large, is the analytic
extension of the divergence factor well known in (real) ray theory.

In addition to the saddle point contribution (specular reflection) in Eq. (50),
we must account for contributions from spectral poles of R(v) crossed during
the deformation of the integration contour into the SDP. We are interested
especially in the regime where R(v) is not slowly varying but possesses pole
singularities near the saddle point. This requires uniform asymptotics as de-
tailed [14]. The uniform asymptotic reduction of the scattered field integral
in Eq. (47) thus becomes

,6D(PP) _ Dr 1 M Res{R(v)}•, e2D.P ;inpr r.-.E y• . .. exp[*P2o(vp,)] (-'sp,)

- j=1 k! pp' s s- "f

(52)

with D,,p(r; r_) given in Eq. (50), the phase 5D given in Eq. (48), i and

P' in Eq. (51), the angles -y, 7_', and - in Eq. (45) with Kj --+ k/, and the
saddle point 17, defined by the relation in Eq. (49). The numerical distance
4. is defined by

PD( P2D ); arg [/A,,] = arg [vP, ] -arg [SDPI].]
(53)

where arg [SDPIo,] represents the argument of dv along the SDP at v = 1ý

and vp, represents the jth pole of the reflection coefficient R(v), with residue
denoted by Res{R(v)}bp. The first term in Eq. (52) identifies the specularly

reflected beam field in Eq. (50). The second term in Eq. (52) comprises
residue contributions from M simple pole singularities that are assumed to
be near the saddle point, and it describes the contributing leaky waves made
uniform by the transition function Tro given in Eq. 22. As for the planar
case, the form of the transition function in Eq. 22 is retained intact to yield a
robust and versatile algorithm for beams incident at arbitrary angles and with
arbitrary collimations (see Sec.3.2.2 in [14]). Because of curvature-induced
beam divergence, in contrast to planar geometry [1], both diverging and well
collimated incident beams give rise to broad excursions of the reflected field
saddle point i, in the complex v-plane. This behavior, which is associated
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only with diverging beams in the planar geometry, leads to saddle point
proximities near most of the relevant leaky wave poles, thereby requiring
use of the full expression for 7, whereas that expression could have been
approximated asymptotically for various parameter ranges in the planar case
(see [14]). The validity of the asymptotic solution in Eq. (52) will be checked
against the reference solution obtained by direct numerical integration of the
spectral integral in Eq. (47).

2.2.5 3-D Asymptotic nonspecular reflected fields

As mentioned earlier, the asymptotic reduction for this case requires care-
ful handling since the reflection coefficient R(v, /3) depends on both spectral
wavenumbers. This fact will become clear when evaluating the residue con-
tribution of a pole singularity of R(v,#). First, let us evaluate the saddle
point contribution, assuming a slowly varying R(v, /3). First, the saddle point
(z,, 3,) of the phase P53D(v, /3) in Eq. (44) is found to satisfy the following
simultaneous equations,

'+ I'- 23 - - ý( -- = 0

[3 [kV ]-12f (pFin y + p' sin -' - 2a sin -y')] -(z -(-)=0 (54)

where the an$1es 7,y"•, -yand are defined in Eq. (45). The complex geomet-

rical lengths 1' anc 1 are defined by

P,=p_,sin-y_'-asin'Yaj,,,ý,; 1= psin-y-asin3,l,,a, (55)

and we introduce the more convenient angular wavenumber variable 0 defined
by

/3 =kf sin V, KJ = kf cosl9. (56)

Using Eqs. (55) and (56), it is possible to evaluate the phase at the saddle
point (iV,,/) or (17., V) and write it in the following form,

P3 oD(t,,O) k! [(P + i)cost1 + (z - Z')sin - = kf [L + L],- (57)

where L' and L are shown in Figure l(a). The resulting saddle point
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Figure 2: The geometry of the cylindrical configuration for a 3D CSP beam
incident on a cylindrical surface.
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contribution can be written in the following complex ray form,

@3D,sp(rL) - R(;,, 4 exp [ik1(L' + L)] 2+ a(P' + i)sin -y . (58)

v,:ere all quantities are evaluated at (zo, 44. This expression represents the
3D quasi-Gaussian beam reflected from a cylindrical surface under specu-
lar conditions where R(v, 4) is slowly varying in the vicinity of (1;,, 4.). In
particular, the square root in Eq. (58) can be interpreted as the divergence
coefficient which contains the effect of the interface curvature on the 3D CSP
beam. We note that this complex ray field can also be constructed directly
via a CSP-extended ray theory ([11], Sec.6.7).

We turn now to the residue contributions. Let R(v, 4) be given by,

R(v, 4) = N(v, 0) [D(v, )]- (59)

Pole singularities of R(v, 4) satisfy

D(v,13) =0 (60)

which defines a dispersion relation for the guided modes of the structure that
can be solved formally as

vp =_ vp(g) or Op, =_,,p(v). (61)

The subscript "p" refers to a pole singularity. Assuming that the v inte-
gration is performed first, the residue contribution of the intercepted pole
vp(o) in the v plane is followed by integration along the SDP in the 4 plane
which passes by the saddle point 4' of the phase iP3TD [vp(3), 4] defined as
(the prime on 4' distinguishes this quantity from 4, defined in Eq. (54)),

dPrD [vpc6'),fi4 [a9p3 + 1~3 -v()0 (2d# -[ i#+ v 00 .,€:)•

Using the explicit expressions of the partial derivatives of the phase in Eq. (44),
we can write the condition in Eq. (62) in the following form

Ai 2 = aAý2  dvp(/)/a (63)
I- dO j (A')J;
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where (see Figure 1(b))

A 2 [ 0- -3 2 ]1/ 2(psin7 + ,sin-•'- 2asin-Y)] + (z -'0 0)
:42 = -O[k + - - sin - + 

(64)

The asymptotic expression for the residue contribution in the v plane, fol-
lowed by saddle point evaluation in the /3 plane, can be written as,

( 1 M N(53 ) ,(i,)exp [ip"(Jl-)] 2ri
4( , 4 =1 D ( Iii)/Ov j(k f - I32)ppsin -fsin ' li, 5 d23P ( 65j)/d/32

(65)

where iij = (/3;), /3],with i,,, (/3s) and 4, computed from the simultaneous

solution of Eqs. (60) and (62), respectively. We shall refer to this expression
as the nonuniform LW field. The quantity (Iij) is defined generically by

11, if SDP intercepts k.
E(kp)= 1/2, if SDP passes through kp (66)

0, otherwise.

Furthermore, in Eq. (65)

d2P~rD(li5J)/d#3 = {P2 ,= . [dvI(/)/d/3]2 + 2P3D.,c [dvp(/3)/d/3j"" ~2 PrD. } ,C (67)

+J3D,1 [d2v,(/3)/d/3 + } (67)

where the comma denotes partial differentiation with respect to the indicated
variable, i.e. 'p~DV,,, =8P2D/I' and 3 = 2P~o/OI3 , etc.. The deriva-
tives dvp(/3)/d/3 and d&v,(O)/d/32 can be defined from implicit differentiation
of the dispersion relation (60) as follows [20]

dii( )I- = '- 1 (68)dT P D,,

d2VP(O3) (D,0)2D,,, - 2D,,,D,D,,,c + (D,.,) 2D,# 1 69)
d02 I' = (D,.) 3  I•. (
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The phase function of the nonuniform leaky wave field in Eq. (65) can be
interpreted in terms of geometrical paths as follows (see Figure 1 (b))

iP3 D [vp~;),/;)] = ikj(f, + i 3 ) + i3;Ai 2 + ivpA 2 , (70)

where the complex lengths Az 2 and Az 2 have been defined in Eq. (64) and
are identified, respectively, as the projections onto the z and azimuthal 0
directions of the LW path on the cylindrical surface. The complex lengths
iL and f 3, shown in Figure 1(b), are defined by

A = p'sin -' - a sin 7i p sin y - a sin -y

Cos cos' , (71)

where i's is related to 13' through the transformation in Eq. (56).

It should be noted that we can also obtain the nonuniform residue con-
tribution by performing the 03 integration first, picking up the residue at
i3p= 3p(v) followed by saddle point evaluation of the integral in the V plane.
The equivalence of the two results can be established by noting that

2P3  [2(3)1~ _ PD 11pv,<d13(v) ]1-D d and

d13p(v) - dvp(13) -I72

dv - [ (72)

where the last equality in Eq. (72) can be derived from Eq. (68), and its
counterpart obtained by considering/3 =3(v).

To obtain the uniform asymptotic expression representing the nonspecu-
lar reflected field, we multiply the residue contributions rD )lar eflcte fild, e mltily he eside cntrbutons3D,,,,(r, r_) by the

transition function r(-i.Zg,) and add to the result the specular reflected field

3D.,p(r, 20 to obtain,

ý3D(L 2) = $3rD,p(!_,2) + (%D,res(r, _')T(-is;,), (73)
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where •b3,,p(_, 20 is given by Eq. (58), and 4b3D,,.,o(Lr,2) is given by Eq. (65)
with (fij) = 1, j = 1, M. The numerical distance accounting for the prox-
imity of the saddle point and the jth pole is defined by

Si = V/i [P3;Dc( '63 D (';P, 00)1 ,1

arg{fs,} = arg{vp,(/4/) - i.} - arg{SDPI,;}. (74)
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2.3 Complex Receiver Point

The idea of the complex source point can be extended to the receiving trans-
ducer. The reciprocity theorem can be used efficiently to calculate the voltage
in the receiving transducer. The idea of the complex receiver point trans-
ducer follows directly from that of complex source point. The reciprocal
transducer which can both radiate and receive will be called the complex
transducer point (CTP). The voltage ER received by a transducer can be
expressed as a convolution of the impinging field, due to source S, with the
receiving transfer function of R?. ER can be written as

ER ZL [ Hol(k., kv)Ns(k,, ky)dk, dkY, (75)
ZL + Hooif

where Hol(k., kv) is the spectral receiving characteristic of transducer 1?. and
Ns(k,, ky) is the spectral amplitude of plane waves emanating from S. H0o
is the electrical impedance of the receiver with no plane wave incident and
ZL is the load impedance of the receiver circuit. The contours of integration
in Eq. (75) are taken along the real axis in the k. and k. planes. Since
transducer 1Z is reciprocal, the receiving characteristic Hal can be expressed
in terms of its radiating characteristic H10

Ho1(k., ky) = H10(-k., -Ic), y = - - k2, (76)
wp r

where p is the fluid density. Hio(k.,, kv) can in turn be related to the spectral
amplitude OR(k,, kv) of the pressure field radiated by 1Z when it is energized
by a current IR through the relation OR(k.,, ky) = Hlo(k,ý, ky)IR. Finally, the
induced voltage ER can be written as

ER = 9K J JfOR(-k.' -k,)Os(k,, k,)ei-(Z')e.k-(z"-x)+ky( -y')]dkx dky,

(77)
where K = ZL/[IR(ZL + Hoo)] is a frequency-dependent factor that can be
measured experimentally. In Eq. (77), the primed and unprimed coordinates
refer to the aperture centers S and IR, respectively. Taking P(k,, k.) and
V.(k., ky) as the spectral amplitudes of the pressure field p(r, r') and axial
z velocity v2(r, r') radiated by either transducer, defined in terms of two-
dimensional Fourier transform as

p(k., kV) 1 ( )2J p(z y, Z)&i(k.+ks)dXdy(
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and
V(k., k) )2(79)

then OR,S are related to P(k:, k.) and V.(k., k.) through the relations

{PRs(k-,k,), V-(Rs)(k.,k,)} = {1,,7}ORs(k.,k,)ei('-'(z')), n = -.L (80)

In Eq. (78), the integral over (x, y) is performed in a plane of constant z.

It can be shown that voltage ER within the paraxial approximation can
be written as

ER A= s(x,y,z;X,Y)ex p{ X + y expik X2 + Y2iw2(Re{ZR})} 2c(Re{zR}) }]dX dY,
(81)

where w(z) is the l/e width at z and c(z) is the on axis radius of the curvature
defined as

z2
c(z) = z + b2 /z, w(z) = w 1 + L., wO= -. (82)

In our case, where the source and the receiver points are located in the
complex plane, the received voltage ER can be written as

eiKR

ER = -irwpKVRVS 4-j-, (83)

where

R = V/(x + XR - X'- Xs) 2 + (y + yR - y- ys)2 + (z + ZR - Z'- zs) 2 ,

(84)
The case where the radiating CSP is located at (0, 0, 0) and the axis is lying
along z and the receiving CRP, whose waist is at (x, y, z) and axis lies in a
direction ajR in the xz plane, results in

R = /(x - ibRsin oR)2 + y2 + (z - ibR cos cR) 2, (85)

where bs and bR determine the 1/e widths of the source and the receiver, i.e.
ws = /2s/k and WR = /2bR/k. The paraxial approximation yields

(x- iB,:)2 + y,2
R - z - iB, + ,( iB.) ,: = bR sin cRB, = bR cos CR. (86)
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Finally, the expression for ER can be written as

ER -i~rwpKVRVSexpfik[z + (X - Xr) 2 + y2  (z - X2)2 + y2 _ ikB},2
4 r(z - iB,) 2C(z) W 2(z) 2z

(87)
where C(z) is the on axis radius of curvature of the received beam wavefront,
W(z) is its l/e width at z, X, = BzB 3 /z is the x-coordinate of the paraxial
wavefront center of curvature, and x2 = Bz/B, is the line of maximum
amplitude of the received beam field.
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3 Experimental Procedure

During this reporting period, the experiments have concentrated on charac-
terizing cylindrical shells. These experiments involve measuring the reflected
field from a curved fluid-solid interface. The samples, equipment, and testing
procedures are described below.

3.1 Sample preparation

Cylindrical samples of various materials and dimensions have been studied
this period. One solid cylinder has been selected to calibrate the new scan-
ning equipment. Several shell samples have been chosen from three different
materials: stainless steel, aluminum, and copper. The shells also have differ-
ent diameters and wall thicknesses, as listed in Table 1.

3.1.1 Solid cylinder

One stainless steel cylinder has been used to calibrate the Panametrics scan-
ning system. The cylinder is made from machined and ground 304 stainless
steel. Its dimensions are 4" diameter and 3" height. The acoustic properties
of 300 series stainless at 20°C are listed in Table 2.

3.1.2 Cylindrical shells

Six cylindrical shells have been fabricated to investigate guided waves in a
curved plate. The samples hive been produced from commercially available
thin-walled tubes. A section of 4" to 8" in length was cut from each tube
and the ends machined perpendicular to the tube axis. Each sample was
mounted on an acrylic disk using an RTV sealant. The RTV provides an
air-tight seal around the base of the shell. The shell can be air-loaded by
inverting it in the water tank, trapping air inside the shell. Table 1 lists the
dimensions and materials for each of the shell specimens.

Shells 1-3 are shown in Figure 3 (left to right), and shells 4-6 are shown
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Sample Material Diam. Thickness
inches inches

1 SS 316 6.5 .113
2 SS 301 4.5 .090
3 SS 3xx 3.5 .120
4 AL 2024 4.5 .140
5 SS 4xx 6.0 .065
6 Copper 3.125 .045

Table 1: Description of shell samples

Material Temperature VI V, p
(0C) (km/s) (km/s) (g/cc)

SS 3xx 20 5.66 3.12 7.9
SS 4xx 20 6.03 3.22 7.7
Al 2024 20 6.37 3.16 2.8
Copper 20 4.70 2.26 8.9

Table 2: Acoustic properties of shell materials

in Figure 4. These figures show the relative sizes of the shell samples.
Shells 1 and 3 have not been tested; the experiments have concentrated on
the thin-walled shells.

The acoustic properties of the various materials are listed in Table 2. The
specific steel alloy for shell 5 is unknown. However, experimental measure-
ment of V, has shown the shell to be 4xx series stainless steel. Shell 6 is also
composed of an undetermined alloy of copper. Again, experimental mea-
surement of V, has confirmed the material properties. The speed of sound
in water, Vf, at 20°C is 1.48 km/s. Temperature fluctuations of the water
bath should be minimal. The room is temperature controlled, and the water
tank contains at least 15 cu. ft. of water, providing thermal stability.
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igure 3: Steel shells

Figure 4: Assorted shells
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Figure 5: Diagram of Panametrics transducer mount

3.2 Experimental apparatus

Since the last reporting period a new scanning system and new transducers
have been employed. All experiments performed during this period have used
this scanning system.

3.2.1 Panametrics scanning system

The scanning system used for testing the cylindrical samples is a commer-
cially available, multi-axis system produced by the Panametrics Co. Auto-
mated Systems Division, of Ithaca, New York. Both transducer arms have a
total of five degrees of freedom. Motion of each manipulator is possible in the
x, y, and z directions, as well as two rotational axes in the horizontal (swivel)
and vertical (gimbal) planes. The two rotational axes are shown in Figure 5.

A full 360° of motion is available on both axes. However, the connector
wire for the transducer limits the rotation to 1800. During a typical scan,
the swivel angle will cover about 90°. The gimbal axis is used only in the
initial calibration process.
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Figure 6: Top view of Panametrics scanning system

Figure 7: Side view of Panametrics scanning system
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Fig.ire 8: Panametrics manual control panel

A top view of the water tank is shown in Figure 6 and a side view in
Figure 7. In both figures. the transmitter is on the left and the receiver is on
the right. A rotational stage is provided in the center of the tank for mounting
the test sample. The stage is not rotated at any time during the scan. The
translational arms have large motor housings on each end of the arm. The
arms can approach to within 8" of each other before the housings come into
contact and possibly damage the servo motors. This limits the lower bound
of the observation angle. A 10" search tube is used to offset the transmitter
and allow a lower observation angle. Typically, -10' is reachable by this
equipment. There is no practical upper bound on the observation angle.

Two control modes are available on the system: manual and computer.
Manual control is used for the initial experimental set-up and calibration of
the position servos. Figure 8 is a photo of the manual control console. The
left column of the console rack contains the oscilloscopes used to monitor
the reflected signal. Below the top oscilloscope is the data-bus status panel.
Beneath the lower oscilloscope is the control panel used for setting the ma-
chine parameters (e.g. amplifier gains, filters, excitation voltage, etc.). The
center column of the rack holds the manual controls for the servo-motors.
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Each of the eleven servos can be operated via a toggle switch on the control
panel. The LED display in the center of the control panel shows the current
position of each servo.

Servo positions are acquired through optical encoders on each axis of
motion. The optical encoders allow for very precise positioning of the trans-
ducers, and for excellent repeatability of scans. All three translational axes
have a maximum precision of 10' mm. The three rotational axes (swivel,
gimbal, rotary stage) have a maximum precision of .001°. All precision "alues
can be reset by the operator by setting a dead-band value on the computer.
Typically, the dead-band for the translational axes is set to .13 mm, and the
dead-band for the rotational axes is set to .010. The high dead-band values
are a result of the control system for the Panametrics system which is being
developed by another group at the NDE Center. If the dead-band is set
too low, the servo positioning becomes under-damped, causing the servo to
oscillate between two positions.

3.2.2 Transducers

Two ULTRAN W575-1 .75" piston transducers are used as transmitter and
receiver for all experiments. These transducers have a main sensitivity peak
at 1MHz, but they are undamped and will also respond at 3, 5, and 7 MHz.
The transmitter is generally mounted on a 5" or a 10" search tube, while
the receiver is attached directly to the transducer mount. The transducers
are placed at equal distances from the shell, and this distance is maintained
throughout the scan.

3.2.3 Computers

A Dell 325D, 386, IBM compatible personal computer is employed for data
acquisition and scanning control (Figure 9, right side). An input file contain-
ing the points in the scanning profile is generated externally and transferred
to the PC. The scanning program positions the transducers at each point
listed in the scan file. At each point, the transducer motion stops, and the
time signal is sampled. Data are sampled at 200MHz in a window of 20ps
length. The A/D converter discretizes the transducer voltage into 256 levels

33



Figure 9: DECstation and personal computer

(0 to 255). If the sampled time signal is clipped (i.e. the discretized volt-
age exceeds 255) the signal gain must be reduced manually. A test signal is
sampled before each scanning run to determine the proper gain settings.

Data handling and numerical simulations are performed on a Digital
DECstation 5000/240 (Figure 9. left side). Numerical analysis of the re-
flected field has been primarily carried out at the Polytechnic University of
New York. Analysis of the experimental data is performed using software
developed for this project and some commercially available software.

3.3 Testing procedure

Accurate positioning of the transducers with respect to the test specimen is
required to ensure accuracy in the results. Prior to running the test scan,the
transducer axis must be normal to the surface of the shell. The transducers
must also be positioned 900 apart. An iterative process is used to position
each of the transducers correctly.
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3.3.1 Transducer position calibration

Prior to beginning a scanning session, the sending transducer must lie
on the x-axis, and the receiver must lie on the y-axis. The x and y axes
correspond to the two translational axes of the scanning system. Refer to
Figure 10 for the calibration process of the transmitter. Prior to the cali-
bration process, the transmitter will be at an arbitrary position (1). The
transmitter is manually set to send and receive a signal pulse. A signal is re-
flected from the shell surface and monitored on an oscilloscope. The reflected
signal is then maximized by adjusting the swivel axis. When the signal is at
a maximum, the transmitter will be normal to the shell surface.

The transmitter is rotated 1800 about the gimbal axis and translated
along the x-axis to position (2). At this position, the swivel encoder is set to
zero. Again, the reflected signal is maximized by adjusting the swivel angle
(3). When the transmitter is normal to the shell, the swivel angle will have
passed through 20 degrees. Next, the swivel is rotated back 0 degrees so
that the transmitter is aligned parallel to the x-axis. The reflected signal is
maximized a final time by translating the transmitter along the y-axis. At
the location of the maximum signal, the transmitter will lie on the x-axis
(4). The transmitter is moved along the x-axis to the final position (5) and
rotated 1800 about the gimbal axis so that it is normal to the shell surface.
A similar process is employed to position the receiver on the y-axis.

When the calibration process is complete, the transducers will be in the
positions shown in Figure 11. The transducers are positioned so that the
distance from the shell surface to the transducer face, the water path, is
150 mm. This is an arbitrary distance. The pivot length is the distance from
the swivel axis to the transducer face and is usually measured during the
calibration process. Once these distances are known, the launching angle for
the transmitter can be calculated using the law of cosines. The observation
angle is measured counter-clockwise from the incident point of the transmit-
ter field. Thus, a negative observation angle means that the reflected field is
being sampled before the point of incidence.
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Figure 10: Calibration process
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Sample# Material Diameter Thickness Angle
- Steel 4" Solid 300
2 Steel 4.5" .090" 350 390
4 Aluminum 4.5" .140" 130
5 Steel 6" .065" 160 330

6 Copper 3.125" .045" 280

Table 3: List of cylindrical samples

3.3.2 Data collection and manipulation

The incident angle for each shell is chosen to excite one or more guided
wave modes. We assume that the curved-shell reflection coefficient poles are
only slightly displaced from those of the Lamb waves, and these latter are
sufficiently accurate for selecting an incident angle. A list of the incident
angles for each sample is given in Table 3.

Data collection is performed by the PC and is completely automated.
A total of 4000 time points are collected for each point in the scan profile.
To make the data file more manageable, and to conserve storage space, the
number of time points is reduced by a factor of 10. This does not affect
the accuracy of the results. The data can be viewed in three forms which
will be described in detail in the Results section. The first form is the raw
time signal. The second form is the Fourier transformed signal, showing the
full frequency spectrum. The third form is the 1 MHz band of the frequency
spectrum. Most of the computations are carried out using software developed
specifically for this project. Final visualization of the results is performed
with PV-WVAVE (Precision Visuals Inc.)
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4 Results and Discussion

A series of experimental studies has been performed to evaluate the per-
formance of the above theoretical model and to determine the feasibility of
non-destructive investigation of curved structures. All of the experiments re-
ported on below have been performed with the Panametrics system described
above. Commercially available piston radiators with a frequency sensitivity
peak centered at 1MHz have been used in each case. The transducers are
placed 150mm from the interface being studied. Therefore, all measurements
are taken in the far-field. The beam can be considered to be collimated, with
the incident angle measured from the central ray of the beam.

Four steps in the analysis procedure must be performed to obtain the
desired 1MHz component of the reflected field. First, the reflection coefficient
poles must be located to determine the incident angle of the beam. Second,
the time signals are monitored during the experiment to maintain proper
gain settings. Third, the data are transformed into the frequency domain to
locate and isolate the 1MHz component of the reflected field. Fourth, the
1-MHz component is displayed and compared to the theoretical model. Each
step is described in detail below.

4.1 Reflection coefficient poles

Prior to running an experiment, the poles of the reflection coefficient must
be located. Each pole corresponds to a guided wave in the shell wall which
can be excited by an incident sound field. The incident angle of the beam
is selected to excite one or more of these modes. A fluid-loaded flat plate
model is sufficient to locate !he poles. When the model is generalized to a
curved shell, the reflection coefficient poles are displaced only slightly. The
reflection coefficient of a flat plate immersed in a fluid is given by

AS- y 2
(A + iY)(S-iY) (88)

where

A = A(k 1 ) = (k 2 - 2k2) 2 tan Kh + 4k 2Kr.,c tan ,cth,
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S = S(ki) = (k2'-2k2) 2cotKih +4k'K, cotKt/h, (89)

V = Y(k ) = pki t/ l

and,

P = pf/P.
J2 _

S = k/,,1  k(90)
k.t,l= W/vIt.tj.

The poles of the reflection coefficient are the values of the complex wave
vector k, for which the denominator of Eq. (88) is zero. However, this func-
tion is complex and not very well behaved. To condition the function for
application of a numerical search routine, the logarithm of the magnitude is
used,

F(ki) = log( I(A + iY)(S - iY)I +1). (91)

Taking the magnitude of the function allows a minimization routine to be
used to locate the poles. The logarithm tends to reduce the gradient of the
function around the poles. A surface plot of Eq. (91) appears in Figure 12.
The characteristic function does not have any relative minima, only absolute
minima. The maxima of the characteristic function do not have any sig-
nificance when taken alone; the value of the reflection coefficient numerator
must also be considered.

Four propagating wave modes are visible at 1MHz: two antisymmetric
modes, A0 and A,, and two symmetric modes, So and S1 . The branch point
corresponds to the critical angle for the longitudinal wave mode. A fifth pole
is also visible. This is the A2 mode, which is cutoff at 1MHz and does not
propagate, owing to the large imaginary component. The numerical values
for the propagating modes of the aluminum shell are listed in Table 4.

A 2-dimensional, non-gradient pattern search is used to obtain the nu-
merical values of the poles [211. This numerical routine can quickly locate
the pole to within 10-i. Since the shell is curved, the incident beam subtends
a range of angles. Thus, several wave modes can be excited simultaneously,
providing more information about the shell. As a greater number of poles
is excited, the incident field couples more effectively with the solid interface,
allowing more energy to penetrate the shell. For the aluminum shell, an
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Mode Pole location T Angle
Antisymmetric 0.8623 + 0.0073i 11.770

1.1101 15.220
2.3288 + 0.0278i 33.420

Symmetric 1.4771 + 0.0508i 20.450

Table 5: Fluid-loaded poles for 4.5" steel cylinder

Mode Pole location Angle
Antisymmetric 0.2294 + 0.0023i 3.110

1.0428 14.280
2.3748 + 0.0343i 43.170

Symmetric 1.2062 + 0.1875i 16.570

Table 6: Fluid-loaded poles for 6" steel cylinder

experiment would be conducted with the beam center incident at 300. Both
the A 0 and SO modes would be excited. Tables 5, 6, and 7 list the numerical
values of k, and the incident angle in water for the propagating modes of the
other samples.

Mode Pole location Angle
Antisymmetric 0.2206 + 0.0030i 2.990

1.3368 18.43'
3.3527 + 0.0776i 52.460

Symmetric 1.6190 + 0.0200i 22.51'

Table 7: Fluid-loaded poles for 3.125" copper cylinder
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4.2 Time domain analysis of the reflected field

Once the experiment has been completed, a time signal of 20ps duration has
been collected for each observation angle in the scan profile. The following
two figures show some sample time signals from the solid stainless steel cylin-
der. The angle is the observation angle measured from the tangent normal at
the point of incidence. Figure 13 shows the raw time signals as sampled by
the A/D converter. The discretization resolution and error are plainly visi-
ble in the time signal. The frequency spectrum shows three peaks at 1MHz,
3MHz, and 5MHz.

The discretization error and signal noise can be reduced for the weaker
signals at high observation angles by increasing the signal gain. As the signal
is sampled, it is averaged a minimum of ten times, suppressing most of the
electronic noise. To aid in examining the time signal, a Gaussian band-
pass filter, centered at 1MHz, was applied to the time signal. The resulting
filtered signal is shown in Figure 14. An important feature of the time signal
data is visible in this figure. As the observation angle increases, the time
signal begins to separate into distinct components owing to the differing
propagation times of the modes represented there. At low observation angles,
the reflected signal is dominated by the specular reflection. This reflection
is visible at 00 and 45*. At 600, the signal begins to separate. The stronger
component, which arrives first, is the non-specular component. The weaker
component, arriving later, is the specular reflection. At 800, the time signal
becomes more highly differentiated. A weak component which arrives first
is the "whispering gallery" mode (to be described in detail below). The
main, non-specular or leaky wave reflection arrives second, and the specular
reflection third.
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Figure 13: Unfiltered time signals
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Time Signal Spectrum
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Figure 14: Filtered time signals
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Figure 15: Time signal plot for copper shell at 0i = 280

Figure 15 shows the time signals at all angles for the air-loaded copper
shell. The time signals for each observation angle are stacked vertically on
the figure. The figure is divided into five bands which represent five segments
of the scanning session. Because the sampling window is limited to 20pis, the
scanning session must be broken into segments to keep the signal within the
window. The range of observation angles is listed for each segment. At low
observations angles (the lower two bands), the signal is dominated by the
specular reflection. Near the top of the second band, the signal begins to
separate into specular and non-specular components.

Each component of the reflected signal travels a different distance and
at different velocities. These paths are shown in Figure 16. The specular
reflection is confined to the water. As the observation angle changes, the
path the specular reflection follows changes non-linearly with respect to the
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Figure 16: Reflected signal paths

observation angle. Thus, in Figure 15, the specular component of the signal
is curved. On the other hand, the non-specular component, in this case a
surface wave, travels through both the water and the fluid-solid interface.
The water path is fixed during the experiment, so only the path in the shell
is changing. This path changes linearly with respect to the observation angle,
so the non-specular component appears linear in Figure 15. The "whispering
gallery" modes are the result of the sound energy traveling at a higher velocity
(transverse wavespeed) along a shorter path composed of chords along the
circumference just inside the cylinder. The "whispering gallery" signal travels
at V1 while the fluid signal and the surface wave travel slower, at Vf and the
Rayleigh velocity, respectively. At low observation angies the "whispering
gallery" signal is overwhelmed by the specular and non-specular reflections.
When the signal becomes visible at higher angles, it will precede the non-
specular reflection, as demo -strated above.

Each signal path has a different velocity due to the different media. The
"-pecular reflection is confined to the fluid and must travel at V1 . The non-
specular component of the reflected field will travel at speed determined
by the pole of the excited mode. The net result is an interference pattern
due to the phase differences between the two components of the reflected
field. Figure 15 clearly shows the interference between the specular and non-
specular reflections. Later figures will show the interference pattern in the
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1MHz component of the reflected field.

4.3 Frequency domain analysis of the reflected field

Of particular interest is the 1MHz component of the reflected field. To
isolate the 1MHz component, the time-signal data must be transformed into
the frequency domain. Figure 17 is a density plot of the reflected field for
the 4.5" stainless steel shell. The vertical axis is the observation angle -100
to 800. The horizontal axis is the frequency from zero to about 8MHz. Four
bands corresponding to the sensitivity peaks of the transducer are visible.
From left to right, the frequency bands are 1MHz, 3MHz, 5MHz, and 7MHz.
The sensitivity of the transducer is centered at 1MHz and this component
of the spectrum vill be used in later sections. The transducer sensitivity at
higher frequencies is reduced, as demonstrated by the decreasing magnitude
of the high frequency bands.

However, there is some useful information contained in this representation
of the reflected field. The interference between the specular and non-specular
components of the reflection is clearly visible as dark stripes passing through
the frequency bands. In this view of the reflected field, the interference fringes
behave as I Additionally, the horizontal axis may be considered to represent
fd, the frequency thickness product. By moving along the horizontal axis,
keeping the frequency fixed at 1MHz, the reflected field can be examined
for any given wall thickness. This has proven useful and accurate for small
changes in wall thickness. Since this plot contains all of the information
present in the reflected field, this representation of the field may, in fact, be
more useful than the 1MHz component alone. If a defect were present in the
shell, or in a layered shell, the effects of the defect on the reflected field may
be more visible when looking at the entire frequency spectrum.

4.4 Reflection at a cylindrical fluid-solid interface

The following sections present the experimental results for the solid cylinder
and the cylindrical shells. The experimental measurements are compared to
the theoretical model when possible.
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Figure 17: Angle vs. frequency density plot of reflected field from steel shell

at 6i = 350, showing the 1, 3, 5, and, 7MHz frequency bands
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Figure 18: Time domain signal for 4.5" stainless steel cylinder at 0i = 30*

4.4.1 Reflection from a solid cylinder

Although the main focus of the research program is the cylindrical shells, a
4.5" solid stainless steel shell was examined to calibrate the new Panametrics
system. For this experiment, the beam center was incident on the cylinder at
300 and the measurements weTe all taken in the far field. The most interesting
result of the experiment was the appearance of the "whispering gallery"
mode. As shown in Figure 16, some of the incident energy can travel through
the cylinder rather than along the surface. The "whispering gallery" signal
follows the shortest path and travels at the highest velocity. Thus, in a time
signal plot, the "whispering gallery" signal will arrive before the non-specular
reflection. This can be seen in Figure 18.

The interference pattern characteristic of the cylindrical structures is also
present, but is less visible in this case. However, if the 1MHz component of
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Figure 19: Reflected field from a solid 4in. stainless steel cylinder at Bi =300

the reflected field is examined the interference pattern is much clearer.
Figure 19 shows the 1MHz component of the reflected field compared to two
model calculations. The reflected field and the numerical results have been
normalized by their maximum values. This allows the peaks to be scaled
and aligned properly. The reflected field from the cylinder is composed of
three distinct regions. A monotonically increasing first mainlobe, a Gaussian-
like second mainlobe which is generally greater in magnitude than the first
mainlobe, and an oscillatory "trailing field." All the minima are sharply
defined and accurately predieted by both theoretical models. The "trailing
field" of the reflected field is lower in amplitude than predicted by both the
point transducer and finite transducer models.

As the amplitude of the field decreases, the effects of the much weaker
"whispering gallery" signal become visible. At an observation angle of 400,
a low spatial-frequency oscillation is superposed on the "trailing field." The
superposed oscillation is at about 1/3 the frequency of the oscillations caused
by the interaction of the specular and non-specular reflections. A "velocity"
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can be inferred from the slopes of the three branches shown in Figure 18.
Note that this "velocity" is not the wavespeed of the signal; it is simply a
measure of the arrival time of a particular signal at the receiver for a given
angle. The difference between the slopes of the "whispering gallery" branch
and the non-specular branch is about one-third of the difference between the
slopes of the specular and non-specular branches. This matches the low-
frequency oscillation in the "trailing field."

4.4.2 Reflection from a fluid loaded cylindrical shell

A series of experimental investigations has been performed on a group of thin-
walled cylindrical shells. The wall thickness of the cylinders in question range
from .75A, to 2.3A, where A, = 1.5mm is the wavelength of sound in water at
1MHz. All measurements were taken in the far field, approximately 1.50mm
from the interface. The incident angle of the sound field is measured from the
beam center and the observation angle is measured counter-clockwise from
the point of incidence. Any incident angle can be chosen, but to improve
coupling between the incident field and the shell, the angle is chosen to
coincide with one or more Lamb modes. Due to the range of angles covered by
the incident field, two or more modes are often excited. The incident angles
chosen for the experimental analysis are listed in Table 3 in the Procedure
section above.

The non-specular reflection is a function of the shell geometry and ma-
terial properties. To explore the relationship between the physical param-
eters and the reflected field, several different materials and configurations
have been chosen. Three engineering materials have been chosen for inves-
tigation: stainless steel, aluminum, and copper. These materials provide a
distribution of density, sound speed, and material damping. The geometry of
the shells has been selected to examine the effects of the shell radius on the
non-specular reflection. Two shells have been examined with internal fluid
loading and internal air loading to determine if energy is transmitted inside
the shell cavity.

As with the solid cylinder, some similar generalizations can be drawn
about the reflected field from a cylindrical shell. The reflected field can
be divided into three regions: a first mainlobe where the energy from the
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Figure 20: Comparison of reflected field for 4.5" SS shell 6, = 350, 310

specular reflection is concentrated, a second mainlobe where the leaky wave
becomes visible, and a trailing field where the energy from the leaky wave
is radiated back into the fluid. However, the relative magnitude of the first
and second mainlobes depends greatly upon the experimental geometry and
material properties. As expected, the first mainlobe is shifted slightly to the
right of the point of incidence. For increasing angles of incidence (i.e. farther
from normal incidence), the first mainlobe shifts farther to the right. This
effect is demonstrated in Figure 20 for a 4-degree increment in incident angle.

The theoretical model prcvides excellent agreement with the experimental
results. Figure 21 shows the results for an early measurement performed on
the 4.5" steel shell with a 310 incident field. The oscillations in the first
mainlobe are much shallower than predicted by the model. However, the
model accurately predicts the oscillations and sharpness of the minima for
the second mainlobe and the trailing field. The trailing field becomes lost in
the ambient noise beyond an observation angle of 600, but the oscillations are
still visible. Later experiments improved the definition of the trailing field
by increasing the signal gain and averaging the sampled signal.
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Figure 21: Reflected field from 4.5" SS shell at e, = 310

Figures 22 through 25 display the amplitude of the reflected field for the
4.5" stainless steel shell with internal iluid-loading and internal air-loading.
The experimental results are compared in Figure 22 and the theoretical mod-
els are compared in Figure 23. The theoretical model predicts that the re-
flected field for both cases should be similar, with more damping in the
fluid-loaded case. Additionally, the model predicts an oscillatory peak for
observation angles prior to the point of incidence.

The measured reflected fields also match closely for positive observation
angles. Higher damping is observed in the fluid-loaded shell, particularly in
the trailing field. However, for observation angles below zero, the reflected
fields are quite different. The reflected field from the air-loaded shell exhibits
the peak predicted by the model, and agrees with the model for the entire
measurement range (Figure 25).

The reflected field from the fluid-loaded steel shell does not have the pre-
dicted first peak, although agreement with the model is excellent for positive
observation angles (Figure 24). For negative observation angles, the magni-
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Figure 23: Model comparison for 4.5" SS shell at O, = 350
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Figure 25: Reflected field from air loaded 4.5" SS shell at 0, 350
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Figure 26: Reflected field from 6" SS shell at 0i = 160

tude of the reflected field is monotonically increasing. We believe that the
first peak may be due to a signal propagating clockwise around the shell,
opposite to the direction of propagation of the main sound signal. The bulk
of the specular reflection will be observed counter-clockwise around the shell.
Thus, this lobe of the reflected field must be caused by a plate wave propa-
gating retrograde and radiating into the fluid. The oscillations of the peak
show that there is a weak interaction between the leaky wave and the small
fraction of the specular reflection that travels clockwise. The peak is well
defined in the reflected field.from the air-loaded shell. A greater amount
of damping is present than predicted by the model, but the peak is located
precisely where predicted. In the reflected field from the fluid-loaded shell,
the first peak is heavily damped and appears as a plateau in the reflected
field. Unlike the air-loaded shell, the fluid-loaded shell can radiate energy
into the fluid from both the interior and exterior of the shell wall. Thus, the
retrograde leaky wave radiates its energy more rapidly in the fluid-loaded
shell.

Figure 26 presents the reflected field for the 6" diameter stainless steel
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Figure 27: Reflected field from fluid-loaded 3.125" copper shell at 8, = 280

shell for an incident angle of 160. Due to the physical constraints on the
Panametrics system, the smallest observation angle that could be reached
was 5'. The large radius of the shell requires the plate waves to travel a
greater distance for a given observation angle. Thus, when the magnitude of
the reflected field is plotted against the observation angle, the field appears
to attenuate rapidly.

The structure of the magnitude distribution is similar to that of the
smaller 4.5" shell; the first mainlobe, second mainlobe, and trailing field
are present, but deformed. Compared to the rest of the reflected field, the
magnitude of the first mainlobe is greatly exaggerated. On the other hand,
the second mainlobe, which usually has a comparable magnitude to the first
mainlobe, is diminished in magnitude. The trailing field attenuates rapidly,
disappearing at an observation angle of 500. This behavior is accurately pre-
dicted by the theoretical model, although the minima are slightly sharper
than predicted.

One copper shell was examined to explore the effect of the material prop-
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Oi = 280
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erties on the reflected field. The copper was assumed to be polycrystalline
to avoid complications due to anisotropy. Measurements have proven this
assumption to be valid. Copper exhibits markedly different material prop-
erties when compared to steel and aluminum. The longitudinal wavespeed
in copper is about 200% less than Ii in steel and about 30% less than Vi in
aluminum. The shear wavespeed, V,, is 30% less in copper. Sound field mea-
surements were taken u-ing the procedures described in the above sections.

Reflected field magnitude curves for fluid-loaded and air-loaded cases are
presented in Figures 27 and 28. Again, the field can be divided into three
regions: a first mainlobe, slightly to the left of the point of incidence, a second
mainlobe to the right of the point of incidence, and a decreasing trailing field.
Currently. only the numerical model for the fluid-loaded shell is available. In
this case. the numerical model does not perform as well as in the previous
cases. Material damping which is present in the copper is not accounted for
in the numerical model. Additional damping must be added to the model to
obtain closer matching of the trailing field.

An interesting periodic effect was noted in the trailing field at 50*, 750,
and beyond. At these points, the magnitude of the peak is less than expected,
giving the peak a truncated appearance. A series of identical experiments
was performed to determine if the trur..,,tion was due to errors in the mea-
surement process. However, the truncation appeared in every measurement.
It was then postulated that there may be a signal traveling through the fluid
inside the shell. Due to the small radius of the shell, this idea seemed plausi-
ble. The shell was tested identically to the original series, but with air filling
the interior of the shell, preventing any sound from propagating inside the
shell cavity. However, as can be seen in Figure 28 the reflected fields for the
air and fluid loaded cases are nearly identical. The truncations appear at
precisely the same locations.'

Finally, the time signals from the two sets of measurements were examined
and compared (Figure 15). At large observation angles, a faint signal can
be seen branching off from the specular reflection to the right. The second
arrow points to this signal. Since this signal appears to the right of the
main specular reflection, it is either traveling at a slower velocity than the
specular reflection, or traveling at the same velocity but following a longer
path. This signal may be part of the specular reflection, a side-lobe from the
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transmitter, or a signal traveling in the shell. The presence of the signal may
be a result of the properties of the copper or a result of the small diameter
of the shell. A measurement of the reflected field from a steel shell of equal
dimensions is planned to determine the origin of this signal.

61



5 Summary and Conclusions

In this report we presented an extension of the two dimensional CSP model
to three dimensions. The 3-D model will provide us with the capability of
modeling of wave reflection from more complex 3-D objects. We have also
presented the new results for cylindrical shells and have shown very good
agreement between experiment and the CSP model. These experiments have
provided insight into the behavior of acoustic beams at curved and planar flu-
id-solid interfaces. All data presented in this report were obtained using new
precision experimental apparatus that is now available to us. Access to this
equipment at the Center for NDE has made it possible for us to extend our
measurement capabilities from CW data acquisition to time-domain pulse
excitation. The new measurement scheme has provided us with a wealth of
information that has lead to uncovering whispering gallery modes in solid
curved structures which had not been isolated in the CW measurements.
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Plans for FY 95

* Continue measurements of non-specular reflection from cylindrical shells
of various materials and radii; compare results with CSP beam model
prediction

* Refine model calculation and/or exp. .... a1 procedure as necessary
to accommodate real material effects

* Extend measurements and model prediction to layered shells

* Investigate the effects of visco-elasticity on experimental procedure

e Apply time-domain analysis methods to raw experimental signals

* Acquire RAM-coated samples to initiate studies on layered cylindrical
shells
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